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Preface

In this tenth edition the basic objective of the earlier editions have been retained:
• to present a comprehensive and rigorous treatment of classical thermodynamics

while retaining an engineering perspective, and in doing so

• to lay the groundwork for subsequent studies in such fields as fluid mechanics, heat
transfer, and statistical thermodynamics, and also

• to prepare the student to effectively use thermodynamics in the practice of engi-
neering.

The presentation is deliberately directed to students. New concepts and definitions
are presented in the context where they are first relevant in a natural progression. The intro-
duction has been reorganized with a very short introduction followed by the first thermo-
dynamic properties to be defined (Chapter 1) which are those that can be readily measured:
pressure, specific volume, and temperature. In Chapter 2, tables of thermodynamic proper-
ties are introduced, but only in regard to these measurable properties. Internal energy and
enthalpy are introduced in connection with the energy equation and the first law, entropy
with the second law, and the Helmholtz and Gibbs functions in the chapter on thermody-
namic relations. Many real world realistic examples and contemporary topics have been
included in the book to assist the student in gaining an understanding of thermodynamics,
and the problems at the end of each chapter have been carefully sequenced to correlate
with the subject matter, and are grouped and identified as such. The early chapters in par-
ticular contain a large number of examples, illustrations and problems, and throughout the
book, chapter-end summaries are included, followed by a set of concept/study problems
that should be of benefit to the students.

NEW FEATURES AND OVERALL BOOK
ORGANIZATION
The tenth edition completes the transition to the e-book format that was started with the
ninth edition. This includes a fully searchable text, select interactivity, and convenient direct
access to supplemental material. The primary interactive element is the set of new student
practice problems for which students can reveal the solutions with a simple click or tap.
These problems expand the examples beyond those in the main chapter text and allows stu-
dents to immediately test their knowledge. The digital format also enables students to access
supplemental notes and files directly from the text. (Supplemental materials also are avail-
able from the companion web site: www.wiley.com/go/borgnakke/FundofThermo10e.)

iii
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iv PREFACE

The e-book organization includes:

• Problems, including both student practice problems with the solution as a drop
down selection together with regular homework problems

• Chapter summary and skill sets includes a new student study guide table

• The main expository text ends with a concept list and equations for each chapter

• Additional study resources, such as extra student problems and how-to notes

• Links to appendices and other reference tables

The e-book also is available bundled with an abridged print companion that includes
the main expository text for Chapters 1-10 and the appendices. Problems are not included
in the print companion.

Chapter Reorganization and Revisions
The majority of the changes for the tenth edition have been to shorten some of the presenta-
tions and to reduce the amount of mathematical derivations of the theory. Material including
derivations that contribute to the understanding of the subject have been left in the text.
Many of the examples have been shortened and they include the units and their conversions
without being too repetitive in the presentation keeping the dublication of some examples
to show the use of english units. The application sections in the end of the chapters have
been expanded somewhat to emphasize the real world examples of devices and processes
for which this subject is important in their analysis and design.

Chapters 1 still contains the most important concepts from physics and the concepts of
the thermodynamic properties that describes the condition of the substance that is included
in the analysis. To have the tools for the analysis the order of the presentation has been kept
from the previous editions so the behavior of pure substances is presented in chapter 2 with
a slight expansion and separation of the different domains for solid, liquid and gas phase
behavior. Though the introduction of the property program CATT3 has been left out the
program is still available from Wiley’s web-site that is related to this book.

Chapter 3 contains the first major change namely to include a description of the
energy resources we consume and the typical energy conversions that are used in mod-
ern societies. Together with the mentioning of renewable energy resources and the end use
of energy it provides a better background for all the subsequent processes and details that
we study. A short description of energy storage systems and some of the energy transfer
processes devices are also presented accompanied by small tables with typical numbers
for such devices. Students typically have only vague ideas about the size of many of the
devices and processes we study. This material is covered under applications in chapter 3
after the introduction of the energy equation. The following chapters deals with analysis
of processes and devices which relates to this and also include a special section of the
homework problems where approbriate. By highlighting this material early it can serve as
a motivating factor to study the subsequent material where the use and need for the theory
becomes evident. Suggested homework that can be included in assignments for this cate-
gory are also available on Wiley’s website for the book for those that desire to emphasize
the energy conversion and conservation subjects.

The balance equations for mass, momentum, energy and entropy follow the same
format to show the uniformity in the basic principles and make the concept something to
be understood and not merely memorized. This is also the reason to use the name energy
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PREFACE v

equation and entropy equation for the first and second law of thermodynamics to stress
they are universally valid not just used in the field of thermodynamics but apply to all
situations and fields of study with no exceptions. Clearly, special cases requires extensions
not covered in this text, but a few of these have been added in Chapter 12 together with the
thermodynamic property relations.

The energy equation applied to a general control volme is retained from the previous
edition that included a section with multi-flow devices. Again this is done to reinforce to
students that the analysis is done by applying the basic principles to systems under investi-
gation. This means the actual mathematical form of the general laws follows the sketches
and figures of the system and the analysis is not a question about finding a suitable formula
in the text. A small table is added in the end to give students some sense of the relative
magnitude of flow devices in terms of the energy transfer per unit mass.

The historical development of the second law of thermodynamics in chapter 5 has
been expanded to include the in-equality of Clausius. This chapter then includes all the his-
torical statements of the second law so chapter 6 exclusively deals with the entropy equation.
To show the generality of the entropy equation a small example is written up applying the
energy and entropy equations to heat engines and heat pumps so it can be demonstrated that
the historical presentation of the second law in Chapter 5 can be completely substituted with
the postulation of the entropy equation and the existence of the absolute temperature scale.
Carnot cycle efficiencies and the fact that real devices have lower efficiency follows from
the basic general laws. Also the direction of heat transfer from a higher temperature domain
towards a lower temperature domain is predicted by the entropy equation due to the require-
ment of a positive entropy generation. These are examples that practice the application of
the general laws for specific cases and improves the students understanding of the material.

The application section in chapter 7 has been expanded a little to include some
description of intercoolers and reheaters as a mean of energy conservation and efficiency
improvements. The device efficiencies is also placed here as an application of the entropy
equation and this whole section has about 30 homwork problems associated with it. The
general summary of the control volume analysis has been removed and will be available
on-line from Wiley website.

Exergy in chapter 8 has been shortened a little to reduce the mathematical manipu-
lation of the equations and a small application section with the second law efficiency for
cycles have been added to illustrate an important aspect of its use. A more detailed discus-
sion of this is now included as a separate section in Chapter 9.

The chapters with cycles are expanded with a few details for specific cycles and some
extensions shown to tie the theory to industrial applications with real systems. The expres-
sion for cycle efficiency is now included for the Stirling, Atkinson and Miller cycles to
show that they all are related to compression and expansion ratios.

The property relations in chapter 12 has been updated to include effects of dilution
and fugacity for mixtures and as a special application the effect of a surface tension is
included under engineering applications. This revision has also removed the older method
for development of thermodynamic tables and now only inlcudes the Helmholtz function
based development.

Web-Based Material
Although most of the supplemental material for this edition of the book is accessible directly
or by links from the e-book, several documents also are available from Wiley’s web site for
the book. The following material will be accessible for students through links to the book
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companion site and additional material reserved for instructors of the course will also by at
Wiley’s book companion site.

Notes for classical thermodynamics. A very short set of notes covers the basic ther-
modynamic analysis with the general laws (continuity, energy and entropy equations) and
some of the specific laws like device equations, process equations, etc. This is useful for
students doing review of the course or for exam preparation as it gives a comprehensive
presentation in a condensed form.

General Control Volume Analysis. This is the short step by step procedure that was at
the end of chapter 7 in the eighth edition.

Extended set of study examples. This document includes a updated collection of addi-
tional examples for students to study. These examples are written slightly longer and more
detailed in the solution than the examples printed in the book and thus are excellent for
self-study. There are about 8 SI unit problems with 3-4 english unit problems for each
chapter covering most of the material in the chapters.

How-to-notes. Frequently asked questions are listed for each of the set of subject areas
in the book with detailed answers. These are questions that are difficult to have room for in
the book. Examples:

How do I find a certain state for R-410A in the B-section tables?

How do I make a linear interpolation?

Should I use internal energy (u) or enthalpy (h) in the energy equation?

When can I use ideal gas law?

Instructor material. A set of powerpoint lecture slides are available. These also include
repeat copies of some book examples with specific heat done with the ideal gas tables and
visa versa. Additional english unit examples are also listed as copies of the SI unit prob-
lems and modified if needed due to the tables. Other material for instructors covers typical
syllabus and homework assignments for a first and a second course in thermodynamics.
Additionally examples of 2 standard 1 hour midterm exams, and a 2 hour final exam are
given for typical Thermodynamics I and Thermodynamics II classes.

FEATURES CONTINUED FROM 9TH EDITION

In-Text-Concept Question
The in-text concept questions appear in the text after major sections of material to allow
student to reflect over the material just presented. These questions are intended to be quick
self tests for students or used by teachers as wrap up checks for each of the subjects covered
and most of these are emphasizing the understanding of the material without being memory
facts.

End-of-Chapter Engineering Applications
The last section in each chapter, called engineering applications, have been revised with
updated illustrations and a few more examples. These sections are intended to be motivating
material mostly informative examples of how this particular chapter material is being used
in actual engineering.
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End-of-Chapter Summaries with Main Concepts and Formulas
The end-of-chapter summaries provide a review of the main concepts covered in the chapter,
with highlighted key words are now located as suplemental material directly accessible
from the e-book. The only part still with the chapter material is an expanded listing of
the key concepts and the formulas including equation numbers. The list of skills that the
student should have mastered after studying the chapter is presented together with a table
of detailed references to examples, equations and homework problems for each specific
skill. These main concepts and formulas are included after the summary for reference and
a collection of these will be accessible through the links to the book companion site. The
main summary of the general control volume analysis has been removed from chapter 7
and placed together with the online material.

Concept-Study Guide Problems
Additional concept questions are placed as problems in the first section of the end of chapter
homework problems. These problems are similar to the in-text concept questions and serve
as study guide problems for each chapter they are a little more like homework problems with
numbers to provide a quick check of the chapter material. These are selected to be short
and directed toward a very specific concept. A student can answer all of these questions to
assess their level of understanding, and determine if any of the subjects need to be studied
further. These problems are also suitable to use together with the rest of the homework
problems in assignments and included in the solution manual.

Homework Problems
The number of homework problems has been significantly reduced but still contains intro-
ductory problems over all aspects of the chapter material and listed according to the subject
sections for easy selection according to the particular coverage given and they are generally
ordered to be progressive more complex and involved. Later problems in many sections are
related to real industrial processes and devices and lebeled under applications or energy
conservation with more comprehensive problems retained and grouped as review prob-
lems. The more comprehensive and lengthy problems have been removed to conserve space.

New and modified problems are reserved for instructors and available from Wileys
website for the book.

Tables
The tables of the substances have been carried over from the 8th edition with alternative
refrigerant R-410A which is the replacement for R-22 and carbon dioxide which is a
natural refrigerant. Several more substances are included in the software.

FLEXIBILITY IN COVERAGE AND SCOPE
The book attempts to cover fairly comprehensively the basic subject matter of classical
thermodynamics, and I believe that the book provides adequate preparation for study of
the application of thermodynamics to the various professional fields as well as for study of
more advanced topics in thermodynamics, such as those related to materials, surface phe-
nomena, plasmas, and cryogenics. I also recognize that a number of colleges offer a single
introductory course in thermodynamics for all departments, and have tried to cover those
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topics that the various departments might wish to have included in such a course. However,
since specific courses vary considerably in prerequisites, specific objectives, duration, and
background of the students, the material is arranged in sections, particularly in the later
chapters, so considerable flexibility exist in the amount of material that may be covered.

The book covers more material than required for a two-semester course sequence,
which provides flexibility for specific choices of topic coverage. Instructors may want to
visit the publisher’s Website at www.wiley.com/go/borgnakke/FundofThermo10e for infor-
mation and suggestions on possible course structure and schedules, and the additional
material mentioned as Web-material which will be updated to include current errata for
the book.

Flexibility with HW simple and extended problems to satisfy depth and time require-
ments Examples of this are constant specific heat question extended to be with variable
specific heats (gas tables), a piston cylinder includes the metal mass besides the contained
mass, some problems are also in english units. Many problems from earlier chapters are
repeated when entropy is added to the analysis.
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Ṡgen rate of entropy generation
t time
T temperature
Tr reduced temperature T/Tc
u, U specific internal energy and total internal energy
v, V specific volume and total volume
vr relative specific volume as used in gas tables
V velocity
w, W work per unit mass and total work
Ẇ rate of work, power
wrev specific reversible work between two states
x quality
y gas-phase mole fraction
y extraction fraction
Z elevation
Z compressibility factor
Z electrical charge

Greek Letters 𝛼 residual volume
𝛼 dimensionless Helmholtz function a/RT
𝛼p volume expansivity
𝛽 coefficient of performance for a refrigerator
𝛽

′
coefficient of performance for a heat pump

𝛽S adiabatic compressibility
𝛽T isothermal compressibility
𝛿 dimensionless density 𝜌

/
𝜌c

𝜂 efficiency
𝜇 chemical potential
𝜈 stoichiometric coefficient
𝜌 density
𝜎 surface tension (F/L), surface energy (E/A)
𝜎 Stefan-Boltzman constant
𝜏 dimensionless temperature variable Tc

/
T

𝜏0 dimensionless temperature variable 1 − Tr
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SYMBOLS xvii

Φ equivalence ratio
𝜙 relative humidity
𝜙, Φ exergy or availability for a control mass
𝜓 specific exergy, flow availability
𝜔 humidity ratio or specific humidity
𝜔 acentric factor

Subscripts c property at the critical point
c.v. control volume
e state of a substance leaving a control volume
f formation
f property of saturated liquid
fg difference in property for saturated vapor and saturated liquid
g property of saturated vapor
i state of a substance entering a control volume
i property of saturated solid
if difference in property for saturated liquid and saturated solid
ig difference in property for saturated vapor and saturated solid
r reduced property
s isentropic process
0 property of the surroundings
0 stagnation property

Superscripts –— bar over symbol denotes property on a molal basis (over V, H, S, U, A, G, the
bar denotes partial molal property)

∘ property at standard-state condition
* ideal gas
* property at the throat of a nozzle
irr irreversible
r real gas part
rev reversible
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CHAPTER 1 PROBLEMS
Student solution available in interactive e-text.

CONCEPT-STUDY GUIDE PROBLEMS
1.1 Separate the list P, F, V, v, 𝜌, T, a, m, L, t, and V into

intensive properties, extensive properties, and non-
properties.

1.2 A tray of liquid water is placed in a freezer where it
cools from 20 to −5∘C. Show the energy flow(s) and
storage and explain what changes.

1.3 The overall density of fibers, rock wool insulation,
foams, and cotton is fairly low. Why?

1.4 Is density a unique measure of mass distribution in
a volume? Does it vary? If so, on what kind of scale
(distance)?

1.5 Water in nature exists in three different phases: solid,
liquid, and vapor (gas). Indicate the relative magni-
tude of density and the specific volume for the three
phases.

1.6 What is the approximate mass of 1 L of gasoline? Of
helium in a balloon at T0, P0?

1.7 Can you carry 1 m3 of liquid water?
1.8 A heavy refrigerator has four height-adjustable feet.

What feature of the feet will ensure that they do not
make dents in the floor?

1.9 A swimming pool has an evenly distributed pressure
at the bottom. Consider a stiff steel plate lying on the

ground. Is the pressure below it just as evenly dis-
tributed?

1.10 If something floats in water, what does it say about
its density?

1.11 Two divers swim at a depth of 20 m. One of them
swims directly under a supertanker; the other avoids
the tanker. Who feels a greater pressure?

1.12 An operating room has a positive gage pressure,
whereas an engine test cell has a vacuum; why is that?

1.13 A water skier does not sink too far down in the water
if the speed is high enough. What makes that situation
different from our static pressure calculations?

1.14 What is the lowest temperature in degrees Celsius?
In degrees Kelvin?

1.15 How cold can it be on Earth and in empty space?

1.16 A thermometer that indicates the temperature with
a liquid column has a bulb with a larger volume of
liquid. Why?

1.17 How can you illustrate the binding energy between
the three atoms in water as they sit in a triatomic water
molecule. Hint: imagine what must happen to create
three separate atoms.

HOMEWORK PROBLEMS
Properties, Units, and Force

1.18 One kilopond (1 kp) is the weight of 1 kg in the stan-
dard gravitational field. What is the weight of 1 kg in
newtons (N)?

1.19 A stainless steel storage tank contains 5 kg of car-
bon dioxide gas and 7 kg of argon gas. How many
kmoles are in the tank?

1.20 A steel cylinder of mass 4 kg contains 4 L of water
at 25∘C at 100 kPa. Find the total mass and volume

of the system. List two extensive and three intensive
properties of the water.

1.21 The Rover Explorer has a mass of 185 kg, how
much does this weigh on the Moon (g = gstd/6) and
on Mars where g = 3.75 m/s2.

1.22 A 1700 kg car moving at 80 km/h is decelerated at
a constant rate of 4 m/s2 to a speed of 20 km/h. What
are the force and total time required?

P-1
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1.23 The elevator in a hotel has a mass of 750 kg, and
it carries six people with a total mass of 450 kg. How
much force should the cable pull up with to have an
acceleration of 1 m/s2 in the upward direction?

1.24 One of the people in the previous problem weighs
80 kg standing still. How much weight does this per-
son feel when the elevator starts moving?

Specific Volume

1.25 A 1-m3 container is filled with 400 kg of granite
stone, 200 kg of dry sand, and 0.2 m3 of liquid 25∘C
water. Using properties from Tables A.3 and A.4, find
the average specific volume and density of the masses
when you exclude air mass and volume.

1.26 A power plant that separates carbon dioxide from
the exhaust gases compresses it to a density of
110 kg/m3 and stores it in an unminable coal seam
with a porous volume of 100 000 m3. Find the mass
that can be stored.

1.27 A 5-m3 container is filled with 900 kg of granite
(density of 2400 kg/m3). The rest of the volume is air,
with density equal to 1.15 kg/m3. Find the mass of air
and the overall (average) specific volume.

Pressure

1.28 A 5000-kg elephant has a cross-sectional area of
0.02 m2 on each foot. Assuming an even distribution,
what is the pressure under its feet?

1.29 A valve in the cylinder shown in Fig. P1.29 has
a cross-sectional area of 11 cm2 with a pressure of
735 kPa inside the cylinder and 99 kPa outside. How
large a force is needed to open the valve?

Poutside

Avalve

Pcyl

Figure P1.29

1.30 The piston cylinder in Fig. P1.29 has a diameter
of 10 cm, inside pressure 735 kPa. What is the force

holding the massless piston up as the piston lower side
has P0 besides the force.

1.31 A hydraulic lift has a maximum fluid pressure of
500 kPa. What should the piston/cylinder diameter be
in order to lift a mass of 850 kg?

1.32 Ahydraulic cylinder has a 125-mm diameter piston
with an ambient pressure of 1 bar. Assuming standard
gravity, find the total mass this piston can lift if the
inside hydraulic fluid pressure is 2500 kPa.

1.33 A 75-kg human total footprint is 0.05 m2 when the
human is wearing boots. Suppose that you want to
walk on snow that can at most support an extra 3 kPa;
what should the total snowshoe area be?

1.34 A piston/cylinder with a cross-sectional area of
0.01 m2 has a piston mass of 65 kg plus a force of
800 N resting on the stops, as shown in Fig. P1.34.
With an outside atmospheric pressure of 101 kPa, what
should the water pressure be to lift the piston?

P0 g

F

Water

Figure P1.34

1.35 A 2.5-m-tall steel cylinder has a cross-sectional area
of 1.5 m2. At the bottom, with a height of 0.5 m, is
liquid water, on top of which is a 1-m-high layer of
engine oil. This is shown in Fig. P1.35. The oil sur-
face is exposed to atmospheric air at 101 kPa. What is
the highest pressure in the water?

Engine oil1 m

0.5 m

2.5 m

Air

P0

H2O

Figure P1.35
P-2
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1.36 An underwater buoy is anchored at the seabed with
a cable, and it contains a total mass of 250 kg. What
should the volume be so that the cable holds it down
with a force of 1000 N?

1.37 A floating oil rig is anchored in the seabed with
cables giving a net pull of 10 000 kN down. How large
a water displacement volume does that lead to?

1.38 At the beach, atmospheric pressure is 1025 mbar.
You dive 15 m down in the ocean, and you later climb
a hill up to 450 m in elevation. Assume that the density
of water is about 1000 kg/m3, and the density of air is
1.18 kg/m3. What pressure do you feel at each place?

1.39 A steel tank of cross-sectional area 3 m2 and height
16 m weighs 10 000 kg and is open at the top, as shown
in Fig. P1.39. We want to float it in the ocean so that it
is positioned 10 m straight down by pouring concrete
into its bottom. How much concrete should we use?

Concrete

Ocean

Air

10 m

Figure P1.39

1.40 A piston, mp = 5 kg, is fitted in a cylinder, A = 15
cm2, that contains a gas. The setup is in a centrifuge
that creates an acceleration of 25 m/s2 in the direction
of piston motion toward the gas. Assuming standard
atmospheric pressure outside the cylinder, find the gas
pressure.

1.41 A container ship is 240 m long and 22 m wide.
Assume that the shape is like a rectangular box. How
much mass does the ship carry as load if it is 10 m
down in the water and the mass of the ship itself is
30 000 tonnes?

Manometers and Barometers

1.42 A probe is lowered 16 m into a lake. Find the abso-
lute pressure there.

1.43 A person, 75 kg, wants to fly (hoover) on a 2 kg
skateboard of size 0.6 m by 0.25 m. How large a gauge
pressure under the board is needed?

1.44 The density of atmospheric air is about 1.15 kg/m3,
which we assume is constant. How large an absolute
pressure will a pilot encounter when flying 2000 m
above ground level, where the pressure is 101 kPa?

1.45 A barometer to measure absolute pressure shows a
mercury column height of 735 mm. The temperature is
such that the density of the mercury is 13 550 kg/m3.
Find the ambient pressure.

1.46 A differential pressure gauge mounted on a vessel
shows 1.25 MPa, and a local barometer gives atmo-
spheric pressure as 0.96 bar. Find the absolute pressure
inside the vessel.

1.47 What pressure difference does a 100-m column of
atmospheric air show?

1.48 A barometer measures 760 mm Hg at street level
and 745 mm Hg on top of a building. How tall is the
building if we assume air density of 1.15 kg/m3?

1.49 An exploration submarine should be able to descend
1200 m down in the ocean. If the ocean density is
1020 kg/m3, what is the maximum pressure on the
submarine hull?

1.50 The absolute pressure in a tank is 115 kPa and the
local ambient absolute pressure is 102 kPa. If a U-tube
with mercury (density = 13 550 kg/m3) is attached to
the tank to measure the gauge pressure, what column
height difference will it show?

1.51 An absolute pressure gauge attached to a steel cylin-
der shows 135 kPa. We want to attach a manometer
using liquid water on a day that Patm = 101 kPa. How
high a fluid level difference must we plan for?

1.52 A pipe flowing light oil has a manometer attached,
as shown in Fig. P1.52. What is the absolute pressure
in the pipe flow?

0.7 m

P0 = 101 kPa

0.1 m

Oil

Water0.3 m

Figure P1.52

1.53 The difference in height between the columns of
a manometer is 200 mm, with a fluid of density

P-3
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900 kg/m3. What is the pressure difference? What is
the height difference if the same pressure difference is
measured using mercury (density = 13 600 kg/m3) as
manometer fluid?

1.54 A piece of experimental apparatus, Fig. P1.54, is
located where g = 9.5 m/s2 and the temperature is 5∘C.
Air flow inside the apparatus is determined by mea-
suring the pressure drop across an orifice with a mer-
cury manometer (density = 13 580 kg/m3) showing
a height difference of 200 mm. What is the pressure
drop in kPa?

Air

g

Figure P1.54

Energy and Temperature

1.55 A 0.25 m3 piece of softwood is lifted up to the top
shelf in a storage bin that is 4 m above the ground
floor. How much increase in potential energy does the
wood get?

1.56 A car of mass 1775 kg travels with a velocity of
100 km/h. Find the kinetic energy. How high should
the car be lifted in the standard gravitational field to
have a potential energy that equals the kinetic energy?

1.57 What is a temperature of −5∘C in degrees Kelvin?

1.58 A mercury thermometer measures temperature by
measuring the volume expansion of a fixed mass of liq-
uid mercury due to a change in density as 𝜌Hg = 13 595
− 2.5 T kg/m3 (T in Celsius). Find the relative change
(%) in volume for a change in temperature from 10 to
20∘C.

1.59 The density of liquid water is 𝜌 = 1008 − T/2
(kg/m3) with T in ∘C. If the temperature increases
10∘C, how much deeper does a 1-m layer of water
become?

Review Problems

1.60 Repeat Problem 1.54 if the flow inside the apparatus
is liquid water (𝜌= 1000 kg/m3) instead of air. Find the

pressure difference between the two holes flush with
the bottom of the channel. You cannot neglect the two
unequal water columns.

1.61 A dam retains a lake 6 m deep, as shown in Fig.
P1.61. To construct a gate in the dam, we need to know
the net horizontal force on a 5-m-wide, 6-m-tall port
section that then replaces a 5-m section of the dam.
Find the net horizontal force from the water on one
side and air on the other side of the port.

Side view

Top view

Lake

6 m

5 m

Lake

Figure P1.61

1.62 In the city water tower, water is pumped up to a level
of 25 m above ground in a pressurized tank with air
at 125 kPa over the water surface. This is illustrated
in Fig. P1.62. Assuming water density of 1000 kg/m3

and standard gravity, find the pressure required to
pump more water in at ground level.

H
g

Figure P1.62

P-4
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1.63 The main waterline into a tall building has a pres-
sure of 600 kPa at 5-m elevation below ground level.
The building is shown in Fig. P1.63. How much extra
pressure does a pump need to add to ensure a water-
line pressure of 200 kPa at the top floor 150 m above-
ground?

5 m

Water main
Pump

150 m

Top floor

Ground

Figure P1.63

ENGLISH UNIT PROBLEMS
English Unit Concept Problems

1.64E A mass of 2 lbm has an acceleration of 5 ft/s2.
What is the needed force in lbf?

1.65E How much mass is in 1 gal of gasoline? In helium
in a balloon at atmospheric P and T?

1.66E Can you easily carry a 1-gal bar of solid gold?

1.67E What is the temperature of −5 F in degrees Rank-
ine?

1.68E What is the lowest possible temperature in degrees
Fahrenheit? In degrees Rankine?

1.69E What is the relative magnitude of degree Rankine
to degree Kelvin?

English Unit Problems

1.70E The Rover Explorer has a mass of 410 lbm, how
much does this “weigh” on the Moon (g = gstd/6) and
on Mars where g = 12.3 ft/s2.

1.71E A 2500-lbm car moving at 25 mi/h is accelerated
at a constant rate of 15 ft/s2 up to a speed of 50 mi/h.
What are the force and total time required?

1.72E An escalator brings four people with a total mass
of 600 lbm and a 1000-lbm cage up with an accelera-
tion of 3 ft/s2. What is the needed force in the cable?

1.73E A car of mass 4000 lbm travels with a velocity of
60 mi/h. Find the kinetic energy. How high should the
car be lifted in the standard gravitational field to have
a potential energy that equals the kinetic energy?

1.74E A power plant that separates carbon dioxide from
the exhaust gases compresses it to a density of
8 lbm/ft3 and stores it in an unminable coal seam with
a porous volume of 3 500 000 ft3. Find the mass that
can be stored.

1.75E The piston cylinder in Fig. P1.29 has a diameter of
4 in., inside pressure 100 psia. What forcemust hold
the massless piston up as the piston lower side has P0

besides the force?

1.76E A laboratory room keeps a vacuum of 1 in. of
water due to the exhaust fan. What is the net force
on a door of size 6 ft by 3 ft?

1.77E A person, 175 lbm, wants to fly (hoover) on a
4 lbm skateboard of size 2 ft by 0.8 ft. How large a
gauge pressure under the board is needed?

1.78E A floating oil rig is anchored in the seabed with
cables giving a net pull of 2 250 000 lbf down. How
large a water displacement volume does that lead to?

1.79E A container ship is 790 ft long and 72 ft wide.
Assume the shape is like a rectangular box. How
much mass does the ship carry as load if it is 30 ft
down in the water and the mass of the ship itself is
30 000 tons.

1.80E A manometer shows a pressure difference of
3.5 in. of liquid mercury. Find ΔP in psi.

1.81E What pressure difference does a 300-ft column of
atmospheric air show?

P-5
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1.82E A piston/cylinder with a cross-sectional area of
0.1 ft2 has a piston mass of 100 lbm and a force of
180 lbf resting on the stops, as shown in Fig. P1.34.
With an outside atmospheric pressure of 1 atm, what
should the water pressure be to lift the piston?

1.83E The main waterline into a tall building has a pres-
sure of 90 psia at 16 ft elevation below ground level.
How much extra pressure does a pump need to add to
ensure a waterline pressure of 30 psia at the top floor
450 ft above ground?

1.84E A piston, mp = 10 lbm, is fitted in a cylinder,
A = 2.5 in.2, that contains a gas. The setup is in
a centrifuge that creates an acceleration of 75 ft/s2.
Assuming standard atmospheric pressure outside the
cylinder, find the gas pressure.

1.85E The human comfort zone is between 18 and 24∘C.
What is the range in Fahrenheit?

P-6
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Summary Objectives

CHAPTER 1 We introduce a thermodynamic system as a control volume, which for a fixed mass is a
control mass. Such a system can be isolated, exchanging neither mass, momentum, nor
energy with its surroundings. A closed system versus an open system refers to the ability of
mass exchange with the surroundings. If properties for a substance change, the state changes
and a process occurs. When a substance has gone through several processes, returning to
the same initial state, it has completed a cycle.

Basic units for thermodynamic and physical properties are mentioned, and most are
covered in Table A.1. Thermodynamic properties such as density 𝜌, specific volume v,
pressure P, and temperature T are introduced together with units for these properties. Prop-
erties are classified as intensive, independent of mass (like v), or extensive, proportional to
mass (like V). Students should already be familiar with other concepts from physics such as
force F, velocity V, and acceleration a. Application of Newton’s law of motion leads to the
variation of static pressure in a column of fluid and the measurements of pressure (absolute
and gauge) by barometers and manometers. The normal temperature scale and the absolute
temperature scale are introduced.

You should have learned a number of skills and acquired abilities from studying this
chapter that will allow you to

• Define (choose) a control volume C.V. around some matter and
• Sketch the content and identify storage locations for mass
• Identify mass and energy flows crossing the C.V. surface

• Know properties P–T–v–𝜌 and their units.

• Know how to look up conversion of units in Table A.1.

• Know that energy is stored as kinetic, potential, or internal (in molecules).

• Know the difference between (v, 𝜌) and (V, m) intensive versus extensive.

• Apply a force balance to a given system and relate it to pressure P.

• Know the difference between a relative (gauge) and absolute pressure P.

• Understand the working of a manometer or a barometer and get ΔP or P from
height H.

• Know the difference between a relative and absolute temperature T.

• Understand how physics of a device can influence a property.

• You should have an idea about magnitudes (v, 𝜌, P, T).

Most of these concepts will be repeated and reinforced in the following chapters, such as
properties in Chapter 2, energy transfer as heat and work, and internal energy in Chapter 3,
together with their applications.

S-1
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Study guide and Chapter
Study Resources

CHAPTER 1 Objectives Reading, Examples,
Eqs & Tables

Concepts, Study,
Hw problems

Know properties P-T-v-𝜌 and
their units

Reading: Sec. 1.3, 1.5–1.7,
1.11
Examples: 1.1–1.5
Eqs : 1.2, 1.3, 1.12, 1.13
Tables: A.1

C: 1, 3–10, 14–15
S: 5, 18, 59
Hw: 19–24, 57–58, 65E–69E,
85E

Know that energy is stored as
kinetic, potential or internal
(in molecules)

Reading: Sec. 1.8
Examples: 1.1–1.5
Eqs. : 1.9, 1.10, 1.11

C: 17
Hw: 19–24, 55–56, 73E

Know the difference between
(v, 𝜌) and (V, m) intensive
versus extensive

Reading: Sec. 1.3
Examples: 1.2

C: 1, 3
Hw: 20

Apply a force balance to a
given system and relate it to
pressure P

Reading: Sec. 1.5–1.7, 1.11
Examples: 1.3, 1.4, 1.7
Eqs : 1.1, 1.3–1.7

C: 8–13
S: 13, 31, 38, 40, 84E
Hw: 28–41, 84E

Know the difference between
a relative (gauge) and
absolute pressure P

Reading: Sec. 1.7
Examples: 1.5 – 1.6
Eqs and Tables: 1.3 – 1.4, 1.6

C: 11–12,
S: 44, 49, 53
Hw: 42–46, 49, 52, 54

Understand manometer and
barometer to get ΔP or P
from height H

Reading: Sec. 1.7
Examples: 1.5–1.6
Eqs : 1.3–1.6

C: 11–12
S: 44, 49, 53, 80E
Hw: 42–54, 80E–83E

Know the difference between
a relative and absolute
temperature T

Reading: Sec. 1.11
Examples: 1.5–1.6
Eqs : 1.12, 1.13
Tables: A.1

C: 14–16
S: 59
Hw: 57–59

Understand how physics of a
device can influence a
property.

Reading: all
Examples: 1.2–1.7
Device eqs.: P = C, V = C,
T = C

nearly all hw

Have an idea about
magnitudes (v, 𝜌, P, T)

Reading: Sec. 1.7
Examples: 1.5–1.6
Equations: 1.2–1.6
Figure: 1.8

S: 18
Hw: 18, 57, 85E

R-1
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1Introduction
and Preliminaries

The field of thermodynamics is concerned with the science of energy focusing on energy
storage and energy conversion processes. We will study the effects of energy on differ-
ent substances, as we may expose a mass to heating/cooling or to volumetric compres-
sion/expansion. During such processes, we are transferring energy into or out of the mass,
so it changes its conditions expressed by properties such as temperature, pressure, and vol-
ume. We use several processes similar to this in our daily lives; we heat water to make coffee
or tea or cool it in a refrigerator to make cold water or ice cubes in a freezer. In nature, water
evaporates from oceans and lakes and mixes with air where the wind can transport it, and
later the water may drop out of the air as either rain (liquid water) or snow (solid water).
As we study these processes in detail, we will focus on situations that are physically simple
and yet typical of real-life situations in industry or nature.

By a combination of processes, we are able to illustrate more complex devices or
complete systems—for instance, a simple steam power plant that is the basic system that
generates the majority of our electric power. Figure 1.1 shows a power plant that produces
electric power and hot water for district heating by burning coal. The coal is supplied by
ship, and the district heating pipes are located in underground tunnels and thus are not
visible. For a better understanding and a technical description, see the simple schematic of
the power plant shown in Fig. 1.2. This includes various outputs from the plant as electric
power to the net, warm water for district heating, slag from burning coal, and other materials
such as ash and gypsum; the last output is a flow of exhaust gases out of the chimney.

Another set of processes forms a good description of a refrigerator that we use to
cool food or apply it at very low temperatures to produce a flow of cold fluid for cryogenic
surgery by freezing tissue for minimal bleeding. A simple schematic for such a system is
shown in Fig. 1.3. The same system can also function as an air conditioner with the dual
purpose of cooling a building in summer and heating it in winter; in this last mode of use, it
is also called a heat pump. For mobile applications, we can make simple models for gasoline
and diesel engines typically used for ground transportation and gas turbines in jet engines
used in aircraft, where low weight and volume are of prime concern. These are just a few
examples of familiar systems that the theory of thermodynamics allows us to analyze. Once
we learn and understand the theory, we will be able to extend the analysis to other cases we
may not be familiar with.

Beyond the description of basic processes and systems, thermodynamics is extended
to cover special situations like moist atmospheric air, which is a mixture of gases, and the
combustion of fuels for use in the burning of coal, oil, or natural gas, which is a chemical
and energy conversion process used in nearly all power-generating devices. Many other
extensions are known; these can be studied in specialty texts. Since all the processes engi-
neers deal with have an impact on the environment, we must be acutely aware of the ways

1
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2 CHAPTER ONE INTRODUCTION AND PRELIMINARIES

FIGURE 1.1 The
Avedoere Power Station,
Denmark. (Courtesy of Dong Energy, Denmark.)

in which we can optimize the use of our natural resources and produce the minimal amount
of negative consequences for our environment. For this reason, the treatment of efficiencies
for processes and devices is important in a modern analysis and is required knowledge for
a complete engineering study of system performance and operation.

Before considering the application of the theory, we will cover a few basic concepts
and definitions for our analysis and review some material from physics and chemistry that
we will need.

1.1 A THERMODYNAMIC SYSTEM
AND THE CONTROL VOLUME

A thermodynamic system is a device or combination of devices containing a quantity of
matter under study. To define this more precisely, a control volume is chosen so that it
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FIGURE 1.2 Schematic diagram of a steam power plant.

FIGURE 1.3
Schematic diagram of a
refrigerator.
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contains the matter and devices inside a control surface. Everything external to the control
volume is the surroundings, with the separation provided by the control surface. The surface
may be open or closed to mass flows, and it may have flows of energy in terms of heat
transfer and work across it. The boundaries may be movable or stationary. In the case of a
control surface closed to mass flow, so that no mass can escape or enter the control volume,
it is called a control mass containing the same amount of matter at all times.
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FIGURE 1.4 Example
of a control mass.
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Selecting the gas in the cylinder of Fig. 1.4 as a control volume by placing a control
surface around it, we recognize this as a control mass. If a Bunsen burner is placed under
the cylinder, the temperature of the gas will increase and the piston will move out. As the
piston moves, the boundary of the control mass also changes. As we will see later, heat
and work cross the boundary of the control mass during this process, but the matter that
composes the control mass can always be identified and remains the same.

An isolated system is one that is not influenced in any way by the surroundings so that
no mass, heat, or work is transferred across the boundary of the system. In a more typical
case, a thermodynamic analysis should be conducted for a device such as an air compres-
sor in which mass flows in and out, as shown schematically in Fig. 1.5. The real system
includes possibly a storage tank, as shown in Fig. 1.20. In such an analysis, we specify
a control volume that surrounds the compressor with a surface called the control surface,
across which there may be a transfer of mass and momentum as well as heat and work.

Thus, the more general control surface defines a control volume, where mass may
flow in or out, while a control mass is the special case of no mass flowing in or out. Hence,
the control mass contains a fixed mass at all times, which explains its name. The general
formulation of the analysis is considered in detail in Chapter 4. The terms closed system
(fixed mass) and open system (involving a flow of mass) are sometimes used to make this
distinction. Here, we use the term system as a more general and loose description for a
mass, device, or combination of devices that then is more precisely defined when a control
volume is selected. The procedure that will be followed in presenting the first and second

FIGURE 1.5 Example
of a control volume.
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laws of thermodynamics is first to present these laws for a control mass and then to extend
the analysis to the more general control volume.

1.2 MACROSCOPIC VERSUS MICROSCOPIC POINTS
OF VIEW

The behavior of a system may be investigated from either a microscopic or macroscopic
point of view. Let us briefly describe a system from a microscopic point of view. Con-
sider a system consisting of a cube 25 mm on each side and containing a monatomic gas
at atmospheric pressure and temperature. This volume contains approximately 1020 atoms.
To describe the position of each atom, we need to specify three coordinates; to describe the
velocity of each atom, we specify three velocity components.

Thus, to describe completely the behavior of this system from a microscopic point
of view, we must deal with at least 6 × 1020 equations. Even with a modern computer,
this is a hopeless computational task. However, there are two approaches to this problem
that reduce the number of equations and variables to a few that can be computed relatively
easily. One is the statistical approach, in which, on the basis of statistical considerations
and probability theory, we deal with average values for all particles under consideration.
This is usually done in connection with a model of the atom under consideration. This is
the approach used in the disciplines of kinetic theory and statistical mechanics.

The other approach to reducing the number of variables to a few that can be handled
relatively easily involves the macroscopic point of view of classical thermodynamics. As
the word macroscopic implies, we are concerned with the gross or average effects of many
molecules. These effects can be perceived by our senses and measured by instruments.
However, what we really perceive and measure is the time-averaged influence of many
molecules. For example, consider the pressure a gas exerts on the walls of its container.
This pressure results from the change in momentum of the molecules as they collide with
the wall. From a macroscopic point of view, however, we are concerned not with the action
of the individual molecules but with the time-averaged force on a given area, which can
be measured by a pressure gauge. In fact, these macroscopic observations are completely
independent of our assumptions regarding the nature of matter.

Although the theory and development in this book are presented from a macroscopic
point of view, a few supplementary remarks regarding the significance of the microscopic
perspective are included as an aid to understanding the physical processes involved. Another
book in this series, Introduction to Thermodynamics: Classical and Statistical, by R. E.
Sonntag and G. J. Van Wylen, includes thermodynamics from the microscopic and statisti-
cal point of view.

A few remarks also should be made regarding the continuum approach. We are nor-
mally concerned with volumes that are very large compared to molecular dimensions and
with time scales that are very large compared to intermolecular collision frequencies. For
this reason, we deal with very large numbers of molecules that interact extremely often dur-
ing our observation period, so we view the system as a simple uniformly distributed mass
in the volume called a continuum. This concept, of course, is only a convenient assump-
tion that loses validity when the mean free path of the molecules approaches the order of
magnitude of the dimensions of the vessel, as, for example, in high-vacuum technology. In
much engineering work, the assumption of a continuum is valid and convenient, consistent
with the macroscopic point of view.
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1.3 PROPERTIES AND STATE OF A SUBSTANCE
If we consider a given mass of water, we recognize that this water can exist in various
forms. If it is a liquid initially, it may become a vapor when it is heated or a solid when it
is cooled. Thus, we speak of the different phases of a substance. A phase is describing a
condition of matter that is homogeneous throughout, commonly referred to as solid, liquid,
or gas phases. When more than one phase is present, the phases are separated from each
other by the phase boundaries. In each phase, the substance may exist at various pressures
and temperatures or, to use the thermodynamic term, in various states. The state may be
identified or described by certain observable, macroscopic properties; some familiar ones
are temperature, pressure, and density. In later chapters, other properties will be introduced.
Each of the properties of a substance in a given state has only one definite value, and these
properties always have the same value for a given state, regardless of how the substance
arrived at the state. In fact, a property can be defined as any quantity that depends on the
state of the system and is independent of the path (i.e., the prior history) by which the system
arrived at the given state. Conversely, the state is specified or described by the properties.
Later, we will consider the number of independent properties a substance can have, that is,
the minimum number of properties that must be specified to fix the state of the substance.

Thermodynamic properties can be divided into two general classes: intensive and
extensive. An intensive property is independent of the mass; the value of an extensive prop-
erty varies directly with the mass. Thus, if a quantity of matter in a given state is divided
into two equal parts, each part will have the same value of intensive properties as the orig-
inal and half the value of the extensive properties. Pressure, temperature, and density are
examples of intensive properties. Mass and total volume are examples of extensive prop-
erties. Extensive properties per unit mass, such as specific volume, see Section 1.6, are
intensive properties.

Frequently we will refer not only to the properties of a substance but also to the prop-
erties of a system. When we do so, we necessarily imply that the value of the property has
significance for the entire system, and this implies equilibrium. For example, if the gas that
composes the system (control mass) in Fig. 1.4 is in thermal equilibrium, the temperature
will be the same throughout the entire system, and we may speak of the temperature as a
property of the system. We may also consider mechanical equilibrium, which is related to
pressure. If a system is in mechanical equilibrium, there is no tendency for the pressure
at any point to change with time as long as the system is isolated from the surroundings.
There will be variation in pressure with elevation because of the influence of gravitational
forces, although under equilibrium conditions there will be no tendency for the pressure
at any location to change. However, in many thermodynamic problems, this variation in
pressure with elevation is so small that it can be neglected. Chemical equilibrium is also
important and will be considered in Chapter 14. When a system is in equilibrium regarding
all possible changes of state, we say that the system is in thermodynamic equilibrium.

1.4 PROCESSES AND CYCLES
Whenever one or more of the properties of a system change, we say that a change in state
has occurred. For example, when the crank moves as shown in Fig. 1.6, the piston moves to
give a larger cylinder volume so a change in state occurs toward a lower pressure and higher
specific volume. The path of the succession of states through which the system passes is
called the process.
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FIGURE 1.6 Example
of a system that may
undergo a
quasi-equilibrium
process.

Gas

Let us consider the equilibrium of a system as it undergoes a change in state. The
moment the piston in Fig. 1.6 is moved, mechanical equilibrium does not exist; as a result,
the volume and pressure change until mechanical equilibrium is restored. The question is
this: Since the properties describe the state of a system only when it is in equilibrium,
how can we describe the states of a system during a process if the actual process occurs
only when equilibrium does not exist? One step in finding the answer to this question
concerns the definition of an ideal process, which we call a quasi-equilibrium process.
A quasi-equilibrium process is one in which the deviation from thermodynamic equilib-
rium is infinitesimal, and all the states the system passes through during a quasi-equilibrium
process may be considered equilibrium states. Many actual processes closely approach a
quasi-equilibrium process and may be so treated with essentially no error. If the piston
moves slowly, the process could be considered quasi-equilibrium. However, if the piston
moves fast, there will be a nonuniform pressure distribution in the gas. This would be a
nonequilibrium process, and the system would not be in equilibrium at any time during this
change of state.

For nonequilibrium processes, we are limited to a description of the system before
the process occurs and after the process is completed and equilibrium is restored. We are
unable to specify each state through which the system passes or the rate at which the process
occurs. However, as we will see later, we are able to describe certain overall effects that
occur during the process.

Several processes are described by the fact that one property remains constant.
The prefix iso- is used to describe such a process. An isothermal process is a constant-
temperature process, an isobaric process is a constant-pressure process, and an isochoric
process is a constant-volume process.

When a system in a given initial state goes through a number of different changes of
state or processes and finally returns to its initial state, the system has undergone a cycle.
Therefore, at the conclusion of a cycle, all the properties have the same value they had at
the beginning. Steam (water) that circulates through a steam power plant undergoes a cycle.

A distinction should be made between a thermodynamic cycle, which has just been
described, and a mechanical cycle. A four-stroke-cycle internal-combustion engine goes
through a mechanical cycle once every two revolutions. However, the working fluid does
not go through a thermodynamic cycle in the engine, since air and fuel are burned and
changed to products of combustion that are exhausted to the atmosphere. In this book, the
term cycle will refer to a thermodynamic cycle unless otherwise designated.

1.5 UNITS FOR MASS, LENGTH, TIME, AND FORCE
Since we are considering thermodynamic properties from a macroscopic perspective, we
are dealing with quantities that can, either directly or indirectly, be measured and counted.
Therefore, the matter of units becomes an important consideration, and they are all shown
in appendix Table A.1. In the remaining sections of this chapter, we will define certain
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thermodynamic properties and the basic units. Because the relation between force and
mass is often difficult for students to understand, it is considered in this section in some
detail.

Force, mass, length, and time are related by Newton’s second law of motion, which
states that the force acting on a body is proportional to the product of the mass and the
acceleration in the direction of the force:

F ∝ ma

The concept of time is well established. The basic unit of time is the second (s),
which in the past was defined in terms of the solar day, the time interval for one complete
revolution of the earth relative to the sun. Since this period varies with the season of the
year, an average value over a 1-year period is called the mean solar day, and the mean solar
second is 1/86 400 of the mean solar day. In 1967, the General Conference of Weights and
Measures (CGPM) adopted a definition of the second as the time required for a beam of
cesium-133 atoms to resonate 9 192 631 770 cycles in a cesium resonator.

For periods of time less than 1 s, the prefixes milli, micro, nano, pico, or femto, as
listed in Table A.0, are commonly used. For longer periods of time, the units minute (min),
hour (h), or day (day) are frequently used. It should be pointed out that the prefixes are used
with many other units as well.

The concept of length is also well established. The basic unit of length is the meter
(m), which used to be marked on a platinum–iridium bar. Currently, the CGPM has adopted
a more precise definition of the meter in terms of the speed of light (which is now a fixed
constant): The meter is the length of the path traveled by light in a vacuum during a time
interval of 1/299 792 458 of a second.

The fundamental unit of mass is the kilogram (kg). As adopted by the first CGPM
in 1889 and restated in 1901, it is the mass of a certain platinum–iridium cylinder main-
tained under prescribed conditions at the International Bureau of Weights and Measures.
A related unit that is used frequently in thermodynamics is the mole (mol), defined as an
amount of substance containing as many elementary entities as there are atoms in 0.012 kg
of carbon-12. These elementary entities must be specified; they may be atoms, molecules,
electrons, ions, or other particles or specific groups. For example, 1 mol of diatomic oxy-
gen, having a molecular mass of 32 (compared to 12 for carbon), has a mass of 0.032 kg.
The mole is often termed a gram mole, since it is an amount of substance in grams numer-
ically equal to the molecular mass. In this book, when using the metric SI system, we will
use the kilomole (kmol), the amount of substance in kilograms numerically equal to the
molecular mass, rather than the mole.

The system of units in use presently throughout most of the world is the metric
International System, commonly referred to as SI units (from Le Système International
d’Unités). In this system, the second, meter, and kilogram are the basic units for time,
length, and mass, respectively, as just defined, and the unit of force is defined directly from
Newton’s second law. The unit conversions are shown in Table A.1 and covers most of the
commonly used ones in SI and English unit systems.

Therefore, a proportionality constant is unnecessary, and we may write that law as an
equality:

F = ma (1.1)
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The unit of force is the newton (N), which by definition is the force required to accelerate
a mass of 1 kg at the rate of 1 m/s2:

1 N = 1 kg m∕s2

It is worth noting that SI units derived from proper nouns use capital letters for symbols;
others use lowercase letters. The liter, with the symbol L, is an exception.

The traditional system of units used in the United States is the English Engineering
System. In this system, the unit of time is the second, which was discussed earlier. The
basic unit of length is the foot (ft), which at present is defined in terms of the meter as

1 ft = 0.3048 m = 12 in.

and therefore also relates to the inch (in.). The unit of mass in this system is the pound mass
(lbm). It was originally defined as the mass of a certain platinum cylinder kept in the Tower
of London, but now it is defined in terms of the kilogram as

1 lbm = 0.453 592 37 kg

A related unit is the pound mole (lb mol), which is an amount of substance in pounds mass
numerically equal to the molecular mass of that substance. It is important to distinguish
between a pound mole and a mole (gram mole).

In the English Engineering System of Units, the unit of force is the pound force (lbf),
defined as the force with which the standard pound mass is attracted to the earth under
conditions of standard acceleration of gravity, which is that at 45∘ latitude and sea level
elevation, 9.806 65 m/s2 or 32.1740 ft/s2. Thus, it follows from Newton’s second law that

1 lbf = 32.174 lbm ft∕s2

which is a necessary factor for the purpose of units conversion and consistency. Note that
we must be careful to distinguish between an lbm and an lbf, and we do not use the term
pound alone.

The term weight is often used with respect to a body and is sometimes confused with
mass. Weight is really correctly used only as a force. When we say that a body weighs so
much, we mean that this is the force with which it is attracted to the earth (or some other
body), that is, the product of its mass and the local gravitational acceleration. The mass of
a substance remains constant with elevation, but its weight varies with elevation.

Example 1.1
What is the weight of a 1-kg mass at an altitude where the local acceleration of gravity is
9.75 m/s2?

Solution
Weight is the force acting on the mass, which from Newton’s second law is

F = mg = 1 kg × 9.75 m∕s2 × [1 N s2∕kg m] = 9.75 N




